Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm
نویسندگان
چکیده
منابع مشابه
Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm
We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best previous such result used exponentially many cuts. More precisely, given an orthogonal polyhedron with n vertices, the algorithm cuts the polyhedron only where it is met by the grid of coordinate planes passing through the ...
متن کاملEpsilon-Unfolding Orthogonal Polyhedra
An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cu...
متن کاملUnfolding Genus-2 Orthogonal Polyhedra with Linear Refinement
We show that every orthogonal polyhedron of genus g ≤ 2 can be unfolded without overlap while using only a linear number of orthogonal cuts (parallel to the polyhedron edges). This is the first result on unfolding general orthogonal polyhedra beyond genus-0. Our unfolding algorithm relies on the existence of at most 2 special leaves in what we call the “unfolding tree” (which ties back to the g...
متن کاملUnfolding Orthogonal Polyhedra
Recent progress is described on the unsolved problem of unfolding the surface of an orthogonal polyhedron to a single non-overlapping planar piece by cutting edges of the polyhedron. Although this is in general not possible, partitioning the faces into the natural vertex-grid may render it always achievable. Advances that have been made on various weakenings of this central problem are summariz...
متن کاملGrid Vertex-Unfolding Orthogonal Polyhedra
An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the faces to a net, a connected planar piece with no overlaps. A grid unfolding allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertexunfolding permits faces in the net to be connected at single vertices, not necessarily along edges. We show that any orthogona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2012
ISSN: 0911-0119,1435-5914
DOI: 10.1007/s00373-012-1257-9